Stochastic Dominance for Sequences and Implied Utility in Dynamic Optimization
نویسندگان
چکیده
We introduce a stochastic dynamic optimization problem, where risk aversion is expressed by a stochastic ordering constraint. The constraint requires that a random reward sequence depending on our decisions dominates a given benchmark random sequence. The dominance is defined by discounting both processes with a family of discount sequences, and by applying a univariate order. We describe the generator of this order. We develop necessary and sufficient conditions of optimality for convex stochastic control problems with the new ordering constraint and we derive an equivalent control problem featuring implied utility functions.
منابع مشابه
Outperformance Testing of a Dynamic Assets Portfolio Selection Supplemented with a Continuous Paths Levy Process
This study aims at getting a better performance for optimal stock portfolios by modeling stocks prices dynamics through a continuous paths Levy process. To this end, the share prices are simulated using a multi-dimensional geometric Brownian motion model. Then, we use the results to form the optimal portfolio by maximizing the Sharpe ratio and comparing the findings with the outputs of the conv...
متن کاملAlmost Stochastic Dominance and Efficient Investment Sets
A major drawback of Mean-Variance and Stochastic Dominance investment criteria is that they may fail to determine dominance even in situations when all “reasonable” decision-makers would clearly prefer one alternative over another. Levy and Leshno [1] suggest Almost Stochastic Dominance (ASD) as a remedy. This paper develops algorithms for deriving the ASD efficient sets. Empirical application ...
متن کاملDevelopment of an Efficient Hybrid Method for Motif Discovery in DNA Sequences
This work presents a hybrid method for motif discovery in DNA sequences. The proposed method called SPSO-Lk, borrows the concept of Chebyshev polynomials and uses the stochastic local search to improve the performance of the basic PSO algorithm as a motif finder. The Chebyshev polynomial concept encourages us to use a linear combination of previously discovered velocities beyond that proposed b...
متن کاملOptimization with Stochastic Dominance Constraints
We introduce stochastic optimization problems involving stochastic dominance constraints. We develop necessary and sufficient conditions of optimality and duality theory for these models and show that the Lagrange multipliers corresponding to dominance constraints are concave nondecreasing utility functions. The models and results are illustrated on a portfolio optimization problem.
متن کاملPortfolio Optimization with Stochastic Dominance Constraints
We consider the problem of constructing a portfolio of finitely many assets whose returns are described by a discrete joint distribution. We propose a new portfolio optimization model involving stochastic dominance constraints on the portfolio return. We develop optimality and duality theory for these models. We construct equivalent optimization models with utility functions. Numerical illustra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008